Turtles (Testudines)
Turtles are diapsids of the order Testudines (or Chelonii) characterized by a special bony or cartilaginous shell developed from their ribs and acting as a shield. "Turtle" may refer to the order as a whole (American English) or to fresh-water and sea-dwelling testudines (British English). The order Testudines includes both extant (living) and extinct species. The earliest known members of this group date from the Middle Jurassic, making turtles one of the oldest reptile groups and a more ancient group than snakes or crocodilians. Of the 356 known species alive today, some are highly endangered.
Turtles are ectotherms—animals commonly called cold-blooded—meaning that their internal temperature varies according to the ambient environment. However, because of their high metabolic rate, leatherback sea turtles have a body temperature that is noticeably higher than that of the surrounding water. Turtles are classified as amniotes, along with other reptiles, birds, and mammals. Like other amniotes, turtles breathe air and do not lay eggs underwater, although many species live in or around water.
The study of turtles is called cheloniology, after the Greek word for turtle. It is also sometimes called testudinology, after the Latin name for turtles.
Turtles | |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Clade: | Testudinata |
Order: | Testudines |
Anatomy and morphology
The largest living chelonian is the leatherback sea turtle (Dermochelys coriacea), which reaches a shell length of 200 cm (6.6 ft) and can reach a weight of over 900 kg (2,000 lb). Freshwater turtles are generally smaller, but with the largest species, the Asian softshell turtle Pelochelys cantorii, a few individuals have been reported up to 200 cm (6.6 ft). This dwarfs even the better-known alligator snapping turtle, the largest chelonian in North America, which attains a shell length of up to 80 cm (2.6 ft) and weighs as much as 113.4 kg (250 lb).
Giant tortoises of the genera Geochelone, Meiolania, and others were relatively widely distributed around the world into prehistoric times, and are known to have existed in North and South America, Australia, and Africa. They became extinct at the same time as the appearance of man, and it is assumed humans hunted them for food. The only surviving giant tortoises are on the Seychelles and Galápagos Islands and can grow to over 130 cm (51 in) in length, and weigh about 300 kg (660 lb).
The largest ever chelonian was Archelon ischyros, a Late Cretaceous sea turtle known to have been up to 4.6 m (15 ft) long.
The smallest turtle is the speckled padloper tortoise of South Africa. It measures no more than 8 cm (3.1 in) in length and weighs about 140 g (4.9 oz). Two other species of small turtles are the American mud turtles and musk turtles that live in an area that ranges from Canada to South America. The shell length of many species in this group is less than 13 cm (5.1 in) in length.
Neck retraction
Turtles are divided into two groups, according to how they retract their necks into their shells (something the ancestral Proganochelys could not do). The mechanism of neck retraction differs phylogenetically: the suborder Pleurodira retracts laterally to the side, anterior to shoulder girdles, while the suborder Cryptodira retracts straight back, between shoulder girdles. These motions are largely due to the morphology and arrangement of cervical vertebrae. Of all recent turtles, the cervical column consists of nine joints and eight vertebrae, which are individually independent. Since these vertebrae are not fused and are rounded, the neck is more flexible, being able to bend in the backwards and sideways directions. The primary function and evolutionary implication of neck retraction is thought to be for feeding rather than protection. Neck retraction and reciprocal extension allows the turtle to reach out further to capture prey while swimming. Neck expansion creates suction when the head is thrust forward and the oropharynx is expanded, and this morphology suggests the retraction function is for feeding purposes as the suction helps catch prey. The protection the shell provides the head when it is retracted is therefore not the main function of retraction, thus is an exaptation. As for the difference between the two methods of retraction, both Pleurodirans and Cryptodirans use the quick extension of the neck as a method of predation, so the difference in retraction mechanism is not due to a difference in ecological niche.
Head
Most turtles that spend most of their lives on land have their eyes looking down at objects in front of them. Some aquatic turtles, such as snapping turtles and soft-shelled turtles, have eyes closer to the top of the head. These species of turtle can hide from predators in shallow water, where they lie entirely submerged except for their eyes and nostrils. Near their eyes, sea turtles possess glands that produce salty tears that rid their body of excess salt taken in from the water they drink.
Turtles have rigid beaks and use their jaws to cut and chew food. Instead of having teeth, which they appear to have lost about 150–200 million years ago, the upper and lower jaws of the turtle are covered by horny ridges. Carnivorous turtles usually have knife-sharp ridges for slicing through their prey. Herbivorous turtles have serrated-edged ridges that help them cut through tough plants. They use their tongues to swallow food, but unlike most reptiles, they cannot stick out their tongues to catch food.
Shell
The upper shell of the turtle is called the carapace. The lower shell that encases the belly is called the plastron. The carapace and plastron are joined together on the turtle's sides by bony structures called bridges. The inner layer of a turtle's shell is made up of about 60 bones that include portions of the backbone and the ribs, meaning the turtle cannot crawl out of its shell. In most turtles, the outer layer of the shell is covered by horny scales called scutes that are part of its outer skin, or epidermis. Scutes are made up of the fibrous protein keratin that also makes up the scales of other reptiles. These scutes overlap the seams between the shell bones and add strength to the shell. Some turtles do not have horny scutes; for example, the leatherback sea turtle and the soft-shelled turtles have shells covered with leathery skin instead.
The shape of the shell gives helpful clues about how a turtle lives. Most tortoises have a large, dome-shaped shell that makes it difficult for predators to crush the shell between their jaws. One of the few exceptions is the African pancake tortoise, which has a flat, flexible shell that allows it to hide in rock crevices. Most aquatic turtles have flat, streamlined shells, which aid in swimming and diving. American snapping turtles and musk turtles have small, cross-shaped plastrons that give them more efficient leg movement for walking along the bottom of ponds and streams. Another exception is the Belawan Turtle (Cirebon, West Java), which has sunken-back soft-shell.
The color of a turtle's shell may vary. Shells are commonly colored brown, black, or olive green. In some species, shells may have red, orange, yellow, or grey markings, often spots, lines, or irregular blotches. One of the most colorful turtles is the eastern painted turtle, which includes a yellow plastron and a black or olive shell with red markings around the rim.
Tortoises, being land-based, have rather heavy shells. In contrast, aquatic and soft-shelled turtles have lighter shells that help them avoid sinking in water and swim faster with more agility. These lighter shells have large spaces called fontanelles between the shell bones. The shells of leatherback sea turtles are extremely light because they lack scutes and contain many fontanelles.
It has been suggested by Jackson (2002) that the turtle shell can function as pH buffer. To endure through anoxic conditions, such as winter periods trapped beneath ice or within anoxic mud at the bottom of ponds, turtles utilize two general physiological mechanisms. In the case of prolonged periods of anoxia, it has been shown that the turtle shell both releases carbonate buffers and uptakes lactic acid.
Respiration
Respiration, for many amniotes, is achieved by the contraction and relaxation of specific muscle groups (i.e. intercostals, abdominal muscles, and/or a diaphragm) attached to an internal rib-cage that can expand or contract the body wall thus assisting airflow in and out of the lungs. The ribs of Chelonians, however, are fused with their carapace and external to their pelvic and pectoral girdles, a feature unique among turtles. This rigid shell is not capable of expansion, and by rendering their rib-cage immobile, Testudines have had to evolve special adaptations for respiration.
Turtle pulmonary ventilation occurs by using specific groups of abdominal muscles attached to their viscera and shell that pull the lungs ventrally during inspiration, where air is drawn in via a negative pressure gradient (Boyle's Law). In expiration, the contraction of the transversus abdominis is the driving force by propelling the viscera into the lungs and expelling air under positive pressure. Conversely, the relaxing and flattening of the oblique abdominis muscle pulls the transversus back down which, once again, draws air back into the lungs. Important auxiliary muscles used for ventilatory processes are the pectoralis, which is used in conjunction with the transverse abdominis during inspiration, and the serratus, which moves with the abdominal oblique accompanying expiration.
The lungs of Testudines are multi-chambered and attached their entire length down the carapace. The number of chambers can vary between taxa, though most commonly they have three lateral chambers, three medial chambers, and one terminal chamber. As previously mentioned, the act of specific abdominal muscles pulling down the viscera (or pushing back up) is what allows for respiration in turtles. Specifically, it is the turtles large liver that pulls or pushes on the lungs. Ventral to the lungs, in the coelomic cavity, the liver of turtles is attached directly to the right lung, and their stomach is directly attached to the left lung by the ventral mesopneumonium, which is attached to their liver by the ventral mesentery. When the liver is pulled down, inspiration begins. Supporting the lungs is the post-pulmonary septum, which is found in all Testudines, and is thought to prevent the lungs from collapsing.
Skin and molting
As mentioned above, the outer layer of the shell is part of the skin; each scute (or plate) on the shell corresponds to a single modified scale. The remainder of the skin has much smaller scales, similar to the skin of other reptiles. Turtles do not molt their skins all at once as snakes do, but continuously in small pieces. When turtles are kept in aquaria, small sheets of dead skin can be seen in the water (often appearing to be a thin piece of plastic) having been sloughed off when the animals deliberately rub themselves against a piece of wood or stone. Tortoises also shed skin, but dead skin is allowed to accumulate into thick knobs and plates that provide protection to parts of the body outside the shell.
By counting the rings formed by the stack of smaller, older scutes on top of the larger, newer ones, it is possible to estimate the age of a turtle, if one knows how many scutes are produced in a year. This method is not very accurate, partly because growth rate is not constant, but also because some of the scutes eventually fall away from the shell.
Limbs
Terrestrial tortoises have short, sturdy feet. Tortoises are famous for moving slowly, in part because of their heavy, cumbersome shells, which restrict stride length.
Amphibious turtles normally have limbs similar to those of tortoises, except that the feet are webbed and often have long claws. These turtles swim using all four feet in a way similar to the dog paddle, with the feet on the left and right side of the body alternately providing thrust. Large turtles tend to swim less than smaller ones, and the very big species, such as alligator snapping turtles, hardly swim at all, preferring to walk along the bottom of the river or lake. As well as webbed feet, turtles have very long claws, used to help them clamber onto riverbanks and floating logs upon which they bask. Male turtles tend to have particularly long claws, and these appear to be used to stimulate the female while mating. While most turtles have webbed feet, some, such as the pig-nosed turtle, have true flippers, with the digits being fused into paddles and the claws being relatively small. These species swim in the same way as sea turtles do (see below).
Sea turtles are almost entirely aquatic and have flippers instead of feet. Sea turtles fly through the water, using the up-and-down motion of the front flippers to generate thrust; the back feet are not used for propulsion but may be used as rudders for steering. Compared with freshwater turtles, sea turtles have very limited mobility on land, and apart from the dash from the nest to the sea as hatchlings, male sea turtles normally never leave the sea. Females must come back onto land to lay eggs. They move very slowly and laboriously, dragging themselves forwards with their flippers.
Behavior
Senses
Turtles are thought to have exceptional night vision due to the unusually large number of rod cells in their retinas. Turtles have color vision with a wealth of cone subtypes with sensitivities ranging from the near ultraviolet (UVA) to red. Some land turtles have very poor pursuit movement abilities, which are normally found only in predators that hunt quick-moving prey, but carnivorous turtles are able to move their heads quickly to snap.
Communication
While typically thought of as mute, turtles make various sounds when communicating. Tortoises may be vocal when courting and mating. Various species of both freshwater and sea turtles emit numerous types of calls, often short and low frequency, from the time they are in the egg to when they are adults. These vocalizations may serve to create group cohesion when migrating.
Intelligence
It has been reported that wood turtles are better than white rats at learning to navigate mazes. Case studies exist of turtles playing. They do, however, have a very low encephalization quotient (relative brain to body mass), and their hard shells enable them to live without fast reflexes or elaborate predator avoidance strategies. In the laboratory, turtles (Pseudemys nelsoni) can learn novel operant tasks and have demonstrated a long-term memory of at least 7.5 months.
en.wikipedia.org