Camel
A camel is an even-toed ungulate in the genus Camelus that bears distinctive fatty deposits known as "humps" on its back. Camels have long been domesticated and, as livestock, they provide food (milk and meat) and textiles (fiber and felt from hair). As working animals, camels—which are uniquely suited to their desert habitats—are a vital means of transport for passengers and cargo. There are three surviving species of camel. The one-humped dromedary makes up 94% of the world's camel population, and the two-humped Bactrian camel makes up the remainder. The Wild Bactrian camel is a separate species and is now critically endangered.
The word camel is derived via Latin: camelus and Greek: κάμηλος (kamēlos) from Hebrew or Phoenician: gāmāl. Used informally, "camel" (or, more correctly, "camelid") refers to any of the seven members of the family Camelidae: the dromedary, the Bactrian, and the wild Bactrian (the true camels), plus the llama, the alpaca, the guanaco, and the vicuña (the "New World" camelids).
The dromedary (C. dromedarius), also known as the Arabian camel, inhabits the Middle East and the Horn of Africa, while the Bactrian (C. bactrianus) inhabits Central Asia, including the historical region of Bactria. The critically endangered wild Bactrian (C. ferus) is found only in remote areas of northwest China and Mongolia. An extinct species of camel in the separate genus Camelops, known as C. hesternus, lived in western North America until humans entered the continent at the end of the Pleistocene.
Camel | |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Order: | Artiodactyla |
Family: | Camelidae |
Tribe: | Camelini |
Genus: | Camelus |
Biology
The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m (6 ft 1 in) at the shoulder and 2.15 m (7 ft 1 in) at the hump. Camels can run at up to 65 km/h (40 mph) in short bursts and sustain speeds of up to 40 km/h (25 mph). Bactrian camels weigh 300 to 1,000 kg (660 to 2,200 lb) and dromedaries 300 to 600 kg (660 to 1,320 lb). The widening toes on a camel's hoof provide supplemental grip for varying soil sediments.
The male dromedary camel has an organ called a dulla in its throat, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.
Ecological and behavioral adaptations
Camels do not directly store water in their humps; they are reservoirs of fatty tissue. Concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.
Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. The dromedary camel can drink as seldom as once every 10 days even under very hot conditions, and can lose up to 30% of its body mass due to dehydration. Unlike other mammals, camels' red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg (1,300 lb) camel can drink 200 L (53 US gal) of water in three minutes.
Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C (93 °F) at dawn and steadily increases to 40 °C (104 °F) by sunset, before they cool off at night again. In general, to compare between camels and the other livestock, camels lose only 1.3 liters of fluid intake every day while the other livestock lose 20 to 40 liters per day (Breulmann, et al., 2007). Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C (120 °F). Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.
When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.
The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C (158 °F). Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.
Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.
The kidneys and intestines of a camel are very efficient at reabsorbing water. Camels' kidneys have a 1:4 cortex to medulla ratio. Thus, the medullary part of a camel's kidney occupies twice as much area as a cow's kidney. Secondly, renal corpuscles have a smaller diameter, which reduces surface area for filtration. These two major anatomical characteristics enable camels to conserve water and limit the volume of urine in extreme desert conditions. Camel urine comes out as a thick syrup, and camel faeces are so dry that they do not require drying when the Bedouins use them to fuel fires. The camels are able to live in difficult conditions without drinking water due to their ability to produce small and dry droppings as well as they use the water to maintain their body's temperature to fit with the region surrounding them (Breulmann, et al., 2007).
The camel immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.
Genetics
The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotype consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.
The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm (1.6–4.7 in) deep that divides the front from the back. The hybrid is 2.15 m (7 ft 1 in) at the shoulder and 2.32 m (7 ft 7 in) tall at the hump. It weighs an average of 650 kg (1,430 lb) and can carry around 400 to 450 kg (880 to 990 lb), which is more than either the dromedary or Bactrian can.
According to molecular data, the New World and Old World camelids diverged about 11 million years ago. In spite of this, these species can hybridize and produce viable offspring. The cama is a camel-llama hybrid bred by scientists to see how closely related the parent species are. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama is halfway in size between a camel and a llama and lacks a hump. It has ears intermediate between those of camels and llamas, longer legs than the llama, and partially cloven hooves. Like the mule, camas are sterile, despite both parents having the same number of chromosomes. The wild Bactrian camel (C. ferus) separated from the domestic Bactrian camel (C. bactrianus) about 1 million years ago.
Evolution
The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.
The direct ancestor of all modern camels, Procamelus, existed in the upper Miocene and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America as part of the Great American Interchange via the newly formed Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate.[66][67] This creature is estimated to have stood around nine feet tall.
The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.
en.wikipedia.org