Asphalt concrete

Asphalt concrete (commonly called asphalt, blacktop, or pavement in North America, and tarmac, bitumen macadam or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams. It consists of mineral aggregate bound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward de Smedt.

The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.

Mixture formulations

Mixing of asphalt and aggregate is accomplished in one of several ways:

Hot-mix asphalt concrete (commonly abbreviated as HMA)
This is produced by heating the asphalt binder to decrease its viscosity, and drying the aggregate to remove moisture from it prior to mixing. Mixing is generally performed with the aggregate at about 300 °F (roughly 150 °C) for virgin asphalt and 330 °F (166 °C) for polymer modified asphalt, and the asphalt cement at 200 °F (95 °C). Paving and compaction must be performed while the asphalt is sufficiently hot. In many countries paving is restricted to summer months because in winter the compacted base will cool the asphalt too much before it is able to be packed to the required density. HMA is the form of asphalt concrete most commonly used on high traffic pavements such as those on major highways, racetracks and airfields. It is also used as an environmental liner for landfills, reservoirs, and fish hatchery ponds.

Warm-mix asphalt concrete (commonly abbreviated as WMA)
This is produced by adding either zeolites, waxes, asphalt emulsions, or sometimes even water to the asphalt binder prior to mixing. This allows significantly lower mixing and laying temperatures and results in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols and vapors. Not only are working conditions improved, but the lower laying-temperature also leads to more rapid availability of the surface for use, which is important for construction sites with critical time schedules. The usage of these additives in hot mixed asphalt (above) may afford easier compaction and allow cold weather paving or longer hauls. Use of warm mix is rapidly expanding. A survey of US asphalt producers found that nearly 25% of asphalt produced in 2012 was warm mix, a 416% increase since 2009.

Cold-mix asphalt concrete
This is produced by emulsifying the asphalt in water with (essentially) soap prior to mixing with the aggregate. While in its emulsified state the asphalt is less viscous and the mixture is easy to work and compact. The emulsion will break after enough water evaporates and the cold mix will, ideally, take on the properties of an HMA pavement. Cold mix is commonly used as a patching material and on lesser trafficked service roads.

Cut-back asphalt concrete
Is a form of cold mix asphalt produced by dissolving the binder in kerosene or another lighter fraction of petroleum prior to mixing with the aggregate. While in its dissolved state the asphalt is less viscous and the mix is easy to work and compact. After the mix is laid down the lighter fraction evaporates. Because of concerns with pollution from the volatile organic compounds in the lighter fraction, cut-back asphalt has been largely replaced by asphalt emulsion.

Mastic asphalt concrete, or sheet asphalt
This is produced by heating hard grade blown bitumen (i.e., partly oxidised) in a green cooker (mixer) until it has become a viscous liquid after which the aggregate mix is then added.

The bitumen aggregate mixture is cooked (matured) for around 6–8 hours and once it is ready the mastic asphalt mixer is transported to the work site where experienced layers empty the mixer and either machine or hand lay the mastic asphalt contents on to the road. Mastic asphalt concrete is generally laid to a thickness of around ​3⁄4–1 ​3⁄16 inches (20–30 mm) for footpath and road applications and around ​3⁄8 of an inch (10 mm) for flooring or roof applications.

High-modulus asphalt concrete, sometimes referred to by the French-language acronym EMÉ (enrobé à module élevé)
This uses a very hard bituminous (penetration 10/20), sometimes modified, in proportions close to 6% on the weight of the aggregates, and a proportion of mineral powder also high, between 8–10%, to create an asphalt concrete layer with a high modulus of elasticity, of the order of 13000 MPa, as well as very high fatigue strengths. High-modulus asphalt layers are used both in reinforcement operations and in the construction of new reinforcements for medium and heavy traffic. In base layers, they tend to exhibit a greater capacity of absorbing tensions and, in general, better fatigue resistance.

In addition to the asphalt and aggregate, additives, such as polymers, and antistripping agents may be added to improve the properties of the final product.

Asphalt concrete pavements—especially those at airfields—are sometimes called tarmac for historical reasons, although they do not contain tar and are not constructed using the macadam process.

A variety of specialty asphalt concrete mixtures have been developed to meet specific needs, such as stone-matrix asphalt, which is designed to ensure a very strong wearing surface, or porous asphalt pavements, which are permeable and allow water to drain through the pavement for controlling stormwater.

Continue reading
When choosing to browse our site, you consent to the use of cookies to tailor your experience. You can withdraw your consent at any time by changing your browser settings and deleting saved cookies. Privacy Policy